

WES Advisory Committee Report

July 14, 20

AGENDA

- 1. WES Exchange Overview
- 2. What we learned
- 3. Vision, Mission, Core Values
 - "How we describe ourselves"
 - "What we want to be known for"
- 4. Performance Clackamas Next Steps

WES Exchange Purpose

Create clarity around our vision, mission, and strategic priorities.

Enhance communication and foster organizational alignment.

Identify creative ways to share ideas, discuss obstacles, and identify opportunities for improvement.

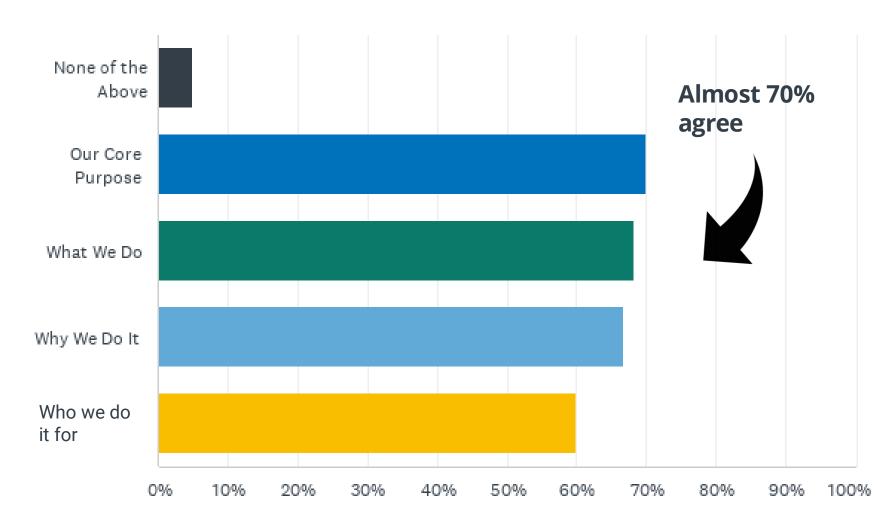
Discovery Approach

Virtual Focus Groups

How do you describe WES' role in the community? Public Health Healthy

Safe Clean Water

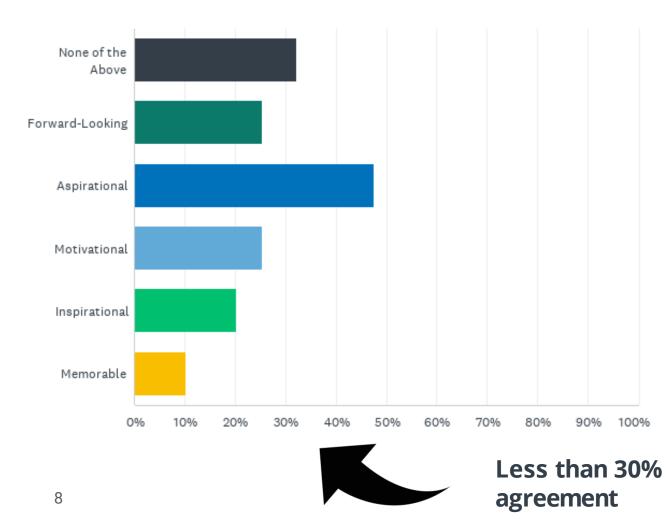
Operational Community Stewards Utility Clean



What do you want WES to be known for?

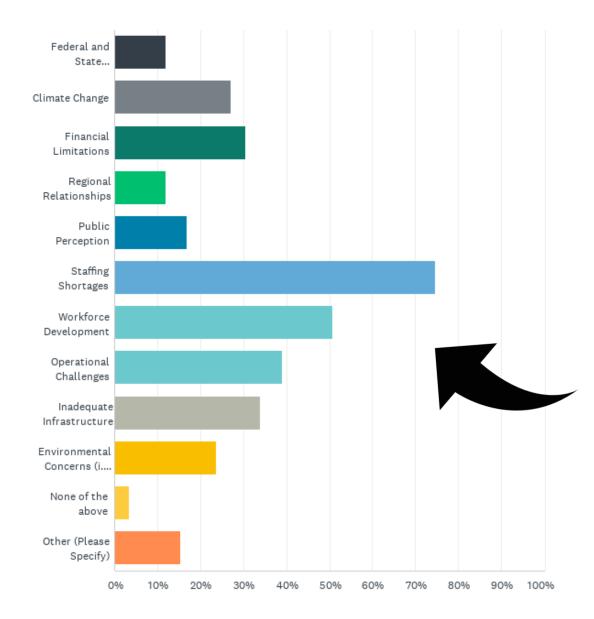
Protecting **Customer service** Water Clean clean water Service innovative water resources **Organization** Community support services environment **Providers** Responsible technology **Good leader**

WES' mission statement "provide resource recovery and watershed protection services to our community so we can live, work, and play in a healthy environment" describes ...



"It **sort of** describes what we do, but not in a way that would resonate or be understandable to our typical ratepayer"

"resource recovery and watershed protection don't fully represent the breadth of our core services"


WES' Vision statement "WES is regionally known as a premiere wastewater and surface water utility" is...

Themes:

- Ranked low for motivational & inspirational
- **Over 30%** indicated the statement did not meet any of the criteria
- Missing 'collaborative' sentiment

What obstacles are limiting us from reaching our vision?

Staffing, workforce development, and operational challenges remain top concerns.

Survey Take-Aways

Strengths:

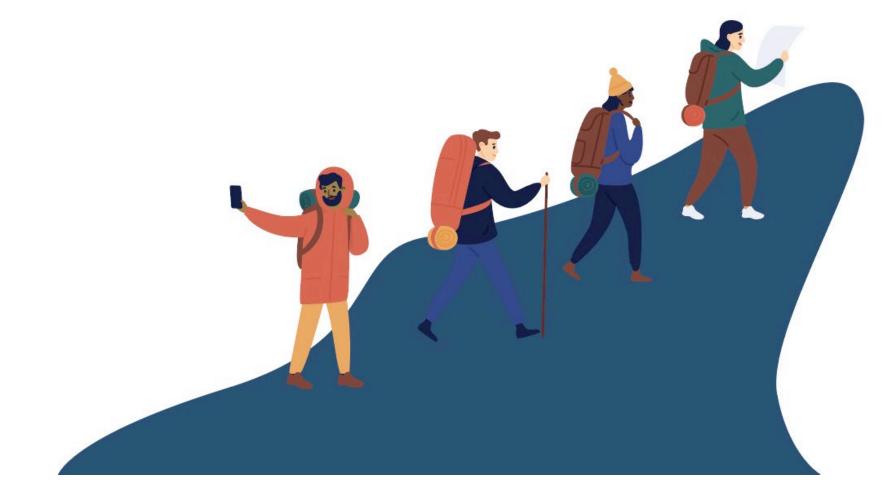
WES staff value:

- Collaboration & Teamwork
- Partnerships with Stakeholders
- Serving your Customers
- Your Charge as Clean Water Champions

WES staff take pride in:

- Your Work & Purpose
- Providing Environmental Protection
- Safeguarding Public Health
- Resolving Customer Issues Quickly
- Educating & Assisting the Community

Opportunities:


WES needs to focus on:

- Increasing Staff Engagement
- Addressing Staffing Shortages and Workforce Development
- Strengthening Organization Culture and Trust in Leadership
- Aligning Strategic Initiatives Priority and Vision

WES staff shared that:

- The Mission Statement sort of describes what we do, but not in a way that would resonate or be understandable to our typical ratepayer.
- The Vision Statement is not connecting with

Vision and Mission Charting our Future, Together

Vision

What are we working towards? Where does WES want to be in the future?

Vision

Be a collaborative partner in building a resilient clean water future where all people benefit and rivers thrive.

Mission

Who we are, what we do, why we matter

Mission

Clackamas Water Environment Services produces clean water, protects water quality and recovers renewable resources. We do this by providing wastewater services, stormwater management, and environmental education. It's our job to protect public health and support the vitality of our communities, natural environment, and economy.

CLACKAMAS

What We Stand For (Our Focus)

- Protecting Public Health
- Investment in Our People
- Stewardship of Healthy Watersheds
- Responsive Customer Service
- Fiscal Responsibility
- Water Resource Recovery

Opportunities & Short-Term Wins

In order to strengthen bonds with each other, WES is identifying shortterm actions to invest in:

- Education and Outreach
- Workforce Development
- Recruitment and Retention
- Workplace Culture

Roadmap for Continued Communications

The WES Exchange team recommends creating a communication roadmap to keep staff engaged and connected to the strategic planning process and beyond. Example actions include:

- 1. Periodic Reports
- 2. Milestone celebrations
- 3. Team conversations

Performance Clackamas Process

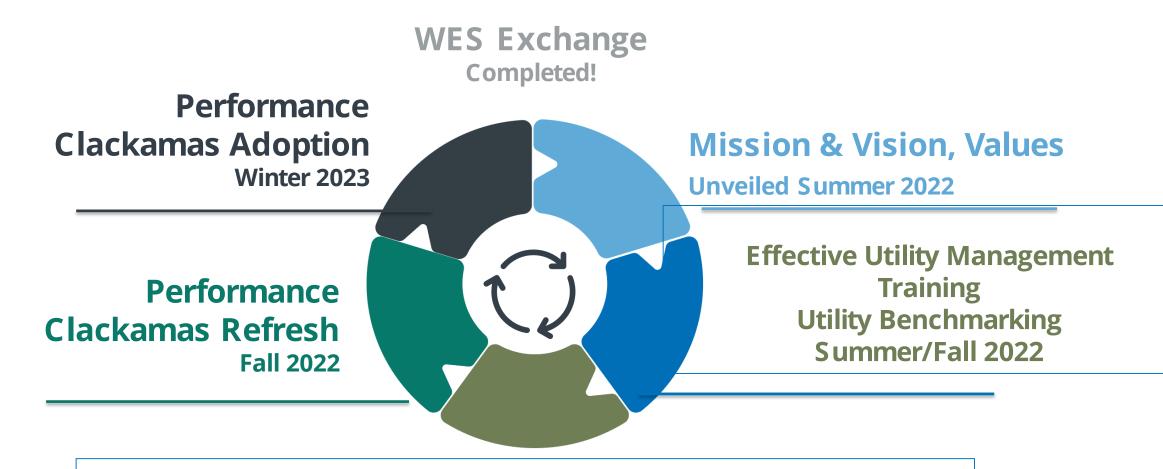
Strategic Plan Development

- Issue assessment
- Define mission, vision, goals
- Select support objectives

Adjust and Improve

- Allocate resources
- Implement improvements
- Refine targets

Measure Performance


- Collect Information
- Verify/validate results

Analyze Results

- Review data
- Determine factors for success

Effective Utility Management Overview WES Advisory Committee Fall 2022

WATER ENVIRONMEN SERVICES

Questions?

WES Storm System Master Plan Update Ron Wierenga, Assistant Director

July 14, 2022

Plan Goals

- Document widespread or urgent system deficiencies
- Create operational programs to address existing issues and reduce backlog of system rehab/repair needs
- Develop a 10-year Capital Improvement Plan for larger more complex projects
- Identify regional projects to serve growth in the Pleasant Valley/North Carver Comprehensive Plan
- Advance policies to guide decision-making

Master Plan Process

- Discovery
 - Review existing studies, reports, and databases
 - Document drainage and maintenance issues known by WES, City of Happy Valley, & Clackamas County staff
- Visioning
 - Values, priorities & rating system
 - Policy recommendations
- Solutions
 - Group systemic or frequent issues to be addressed through programs
 - Rate and rank capital projects
 - Develop a CIP, concepts, and costs for capital projects

Programs

- Detention Pond Repair and Rehabilitation
- Water Quality Retrofits
- Small Drainage Projects
- Restoration and Property Acquisition
- UIC Decommissioning and Retrofits
- Priority CIP

Happy Valley Heights/Highland View Conveyance Project,

Completed 2021

Detention Pond Repair & Rehabilitation

- Provide for repair and rehabilitation for WES owned/operated detention ponds:
 - Removal of sediment & vegetation
 - Clean and/or repair control structure, pipes, weirs
- Approximately 60 detention ponds currently in need of rehabilitation

Water Quality Retrofits

- Modify existing infrastructure to add water quality treatment:
 - Build new structures/systems in older areas
 - Add/improve water quality structures in existing systems where beneficial to nearby stream/river:
 - Large stormwater ponds, stormwater planters in right of way & vegetated swales
- 9 water quality retrofit projects

Nella Way Water Quality & Drainage Project, Completed 2018

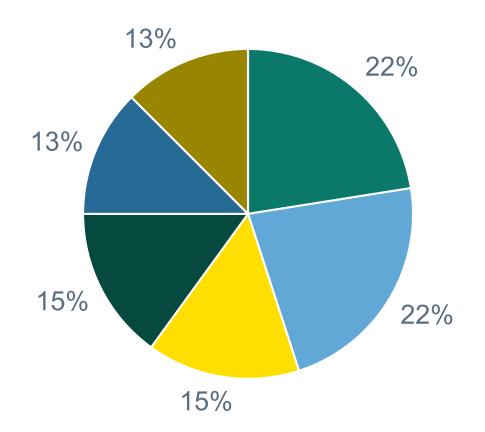
Small Drainage Projects

- Projects that help get runoff into and through the storm system:
 - New/modified inlets & manholes
 - Pipe repairs
 - Root removal/pipe Lining
- 35 known drainage issues

SE Knee Ct. Small Drainage Project Completed 2020

Restoration & Property Acquisition

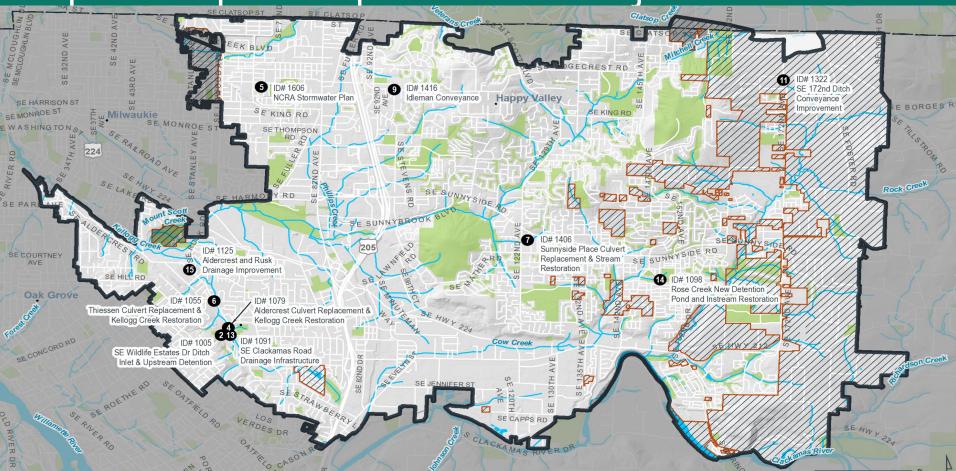
- Restore, revegetate, and acquire critical habitat and riparian areas:
 - In-stream habitat and riparian area restoration
 - Culvert replacement/repair
 - Property acquisition
- 13 Stream locations in need of restoration


Rock Creek Confluence Restoration, Completed 2014

UIC Decommissioning & Retrofit

- Decommission or retrofit underground injection control (UIC) systems:
 - UICs that intersect groundwater
 - UICs near drinking water wells
 - UICs needing water quality treatment structures
- 10 Projects

CIP Priorities and Rating System



Flooding

- Maintenance
- Water Quality
- Stream Health
- Multi-Benefit
- Implementation

Top 10 Capital Improvement Projects

Priority Capital Improvement Projects (CIP)

Project Name	Score	Cost
3-Creeks Water Quality Project (In Progress)		\$3,600,000
SE Wildlife Estates Dr Ditch Inlet & Upstream Detention		\$1,679,470
Valley View Road Drainage (Storm Costs Only)	57	\$3,277,958
Aldercrest Culvert Replacement & Kellogg Creek Restoration	56	\$1,865,013
NCRA Stormwater Plan (Storm Costs & Storm Implementation Only)	56	\$5,144,850
Thiessen Culvert Replacement & Kellogg Creek Restoration	55	\$801,635
Sunnyside Place Culvert Replacement & Stream Restoration	53	\$573,623
Idleman Conveyance System	51.5	\$1,394,900
SE 172nd Ditch Conveyance Improvement	50.5	\$88,800
SE Clackamas Road Drainage Infrastructure	47.5	\$508,400
Rose Creek New Detention Pond and Instream Restoration	47	\$2,589,010
Aldercrest & Rusk Conveyance System	45.5	\$440,100
Total CIP Cost		\$21,963,759

SE Clackamas Road Drainage Infrastructure

Otak

Capital Improvement Project Fact Sheet Project Rank: 13

Project Description

Name: SE Clackamas Road Drainage Infrastructu

Study Area: Kellogg Creek

Location: SE Clackamas Road and SE Tidwells Way east o SE Stohler Road

Problem Summary

The problem area is located just west of where SE Clackamas Road crosses Kellogg Creek, southwest of Ann-Toni Schreiber Park.

> A stream that drains a pond south of SE Tidwells Way is collected by a standard ditch

Inlet at the edge of a residential property and is conveyed in storm pipes down SE Clackamas Road to Kellogg Creek. The ditch inlet is not large enough to capture the stream flow, especially when debris collects at the inlet. Maintenance crews are called frequently to clear the inlet.

The stream frequently exceeds the capacity of the inlet, flows through a yard, and floods SE Clackamas Road and neighboring homes. The problem is compounded by the fact that Kellogg Creek is very flat at this location (0.1% slope), and the SE Clackamas Road crossing consists of a single undersized culvert. The storm pipes on SE Clackamas Road discharge into Kellogg Creek upstream of the road crossing, where a wetland has formed. Backwater from the undersized crossing limits the capacity of the storm pipes in SE Clackamas Road and contributes to the flooding issue.

Clackamas Road-Kellogg Creek crossing without replacing the culvert or disrupting the weltand upstream of the crossing. This will be achieved by replacing the undersized ditch inlet that collects a tributary stream and routing new storm pipes on SE Clackamas Road to a new outfall on the downstream side of the Kellogg Creek crossing instead of into the wetland upstream of the crossing.

Landowner cooperation and an easement will be required for replacement of the storm pipe across private property.

The purpose of this project is to reduce flooding of properties near the SE


The benefits of this project include:

- Reduce flooding of private property, homes, and a roadway
- Reduce maintenance needs

SE Clackamas Road Drainage Infrastructure - page 1 -

Cost Estimate				
Construction	Qty	Unit	Price	Amount
Modify Flow Control, large debris grate	1	EA	\$24,500	\$24,500
Outfall Scour Protection, 12- in to 24-in diam. pipe	1	EA	\$1,900	\$1,900
Storm Sewer Pipe, 18-in diam. pipe	30	FT	\$195	\$5,850
Storm Sewer Pipe, 24-in to 30-in diam. pipe	510	FT	\$235	\$119,850
Mobilization	10%	of Const	ruction	\$33,200
Erosion and Sediment Control	2%	of Construction		\$6,600
Utility Conflict Resolution				\$20,000
Temporary Water Management				\$25,000
Construction Subtotal				\$236,900
Construction Contingency	40%	of Construction		\$94,800
Total Construction Cost				\$331,700
Other	Assur	nption		
Design	25%	of Construction		\$82,900
Basic Permitting Permitting in Jurisdictional				\$10,000
Waters				\$15,000
Project Administration	15%	of Construction		\$49,800
Easement and Acquisition	1500	SF	\$6.00	\$9,000
Easement Administration	1	Per Lot	\$10,000	\$10,000
Total Cost				\$508,400

Annual Program Cost Summary

Program		10-Year Annual Average Cost	15-Year Annual Average Cost
Small Drainage Projects		\$97,100	\$65,000
Detention Pond Repair/Rehab		\$411,000	\$411,000
Water Quality Retrofits		\$172,000	\$115,000
Restoration & Property Acquisition		\$823,000	\$823,000
UIC Decommissioning and Retrofits		\$53,000	\$35,000
Priority Capital Projects		\$2,196,000	\$1,464,000
Emergency Repairs		\$100,000	\$100,000
	Total Annual Program Costs	\$3,852,000	\$3,013,000
	Estimated Staff Needs (FTE)	3.4	2.8

Thank you

Questions?

July 14, 2022

Asset Management Overview

Matt House, Acting Division Manager

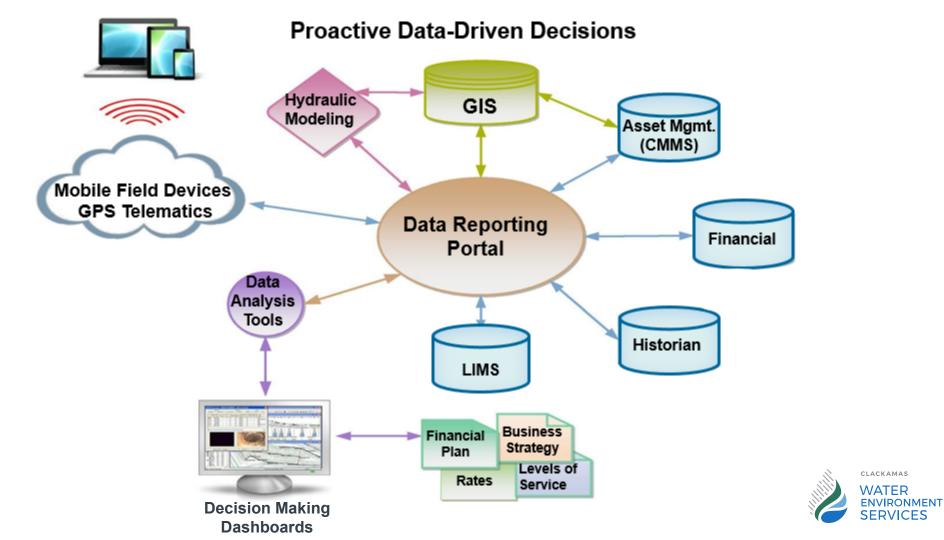
Defining Asset Management

- A process utilities use to make sure that planned maintenance is conducted and capital assets (pumps, motors, pipes, etc.) can be repaired, replaced, or upgraded on time and that there is enough money to pay for it.
- Practice of managing the entire portfolio of utility capital assets to minimize the total cost of owning and operating these assets while delivering desired service levels.

Performance Clackamas

 The purpose of the Asset Management Program is to provide strategies, technology and asset tracking services to WES employees so they can make proactive, data-driven decisions that align to WES' strategic business plan and budget. Performance Clackamas Strategic Business Plan July 1, 2018 (revisions approved 12/20/2018)

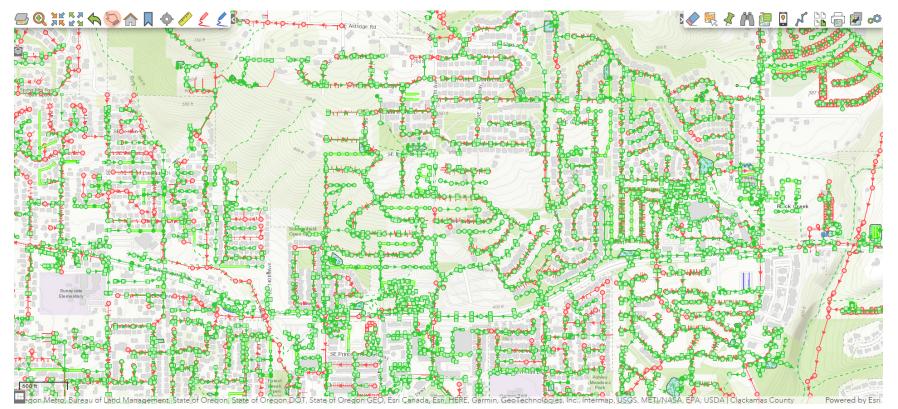
Water is valuable. We *treat* it that way.



Performance Clackamas Program Services

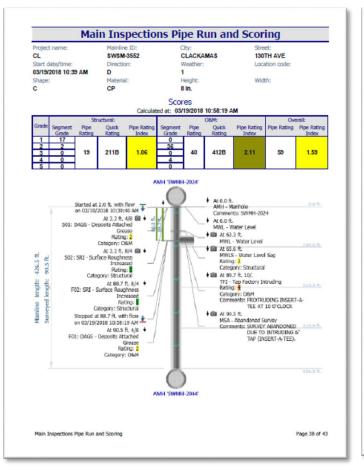
- Asset Inventories
- Asset renewal replacement plans
- GIS Mapping
- Databases
- Computer software licensing, support and training
- Computer hardware acquisitions
- Fleet management
- Utility management best practices

	Home +			🌼 🧮 🎨 🍪 🔗 🌲 🕜 Ма
vater ^	Work Orders	C	Maintenance Requests	C
	+ My Open WOs		+ Requests I Created	
Sanitary	+ Open WOs by Plant		+ New Requests	
ion System	+ Open WOs by Assignment		+ All Requests	
ner Service	+ Open Corrective WOs by Priority			
	+ Open PM WOs by Priority			
	+ All Plant WOs by Status			
ance	WO Lookup			
ng	GO			
/ee Classes				
fications	All Plant Equipment	G	Preventative Maintenance	c
nance		_		
mas	 Plant Equipment by Location & System 		+ Boring PMs	
s	+ Hoodland		+ Hoodland PMs	
	+ Kellogg		+ Kellogg PMs	
ory Clean-	+ Tri-City		+ Tri-City PMs	
	+ Remote Plant Equipment by Type		Pump Stations	
isor Quick	Plant Equipment by Type			
	Pump Station Equipment			
	+ Equipment Readings			
n istrators	Equipment Lookup			
	GO			
g and SOPs				

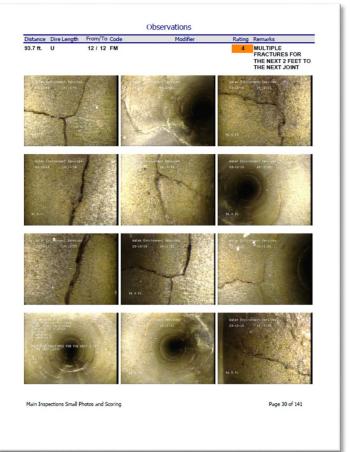

🖪 🖻 🖲 🔻 🏓 🕥 🏹 🚘 🧼 🏠 🔚 🖼 💥 💈

	Equip. ID	T	Equipment Desc.	🝸 Equipment Class 🍸	Equipment Type 🛛 🍸	Plant 🔻	Loca.Ţ.	System	T Manufacturer	Condition	Service Life Model	T
P	TCTP-1867		MBR UV Module 2 CH 1	Support Equipment	Reactor	Tri-City	MBR	UV Disinfection	OZONIA	Good	20 Aquaray	40 HO
1	TCTP-1868		MBR UV Module 2 CH 2	Support Equipment	Reactor	Tri-City	MBR	UV Disinfection	OZONIA	Good	20 Aquaray	/ 40 HO
1	TCTP-1869		MBR UV Rm MUA Unit _630-44-001	HVAC Equipment	Make-up Units	Tri-City	MBR	HVAC Group	Innovent	Very Good	15 E-CAHU	-1A-4275-H
P	TCTP-1874		MBR W3 Pump 1_110-63-111	Pumps	Centrifugal	Tri-City	MBR	Non-Potable Water	Goulds Pumps	Good	22 3196LTI	
P	TCTP-1877		MBR W3 Pump 1_110-63-111VFD	Electrical Devices	Variable Frequency Drives	Tri-City	MBR	Non-Potable Water	Siemens	Good	15 W120CF	·-40750-10
P	TCTP-1883		MBR W3 Pump 2_110-63-121	Pumps	Centrifugal	Tri-City	MBR	Non-Potable Water	Goulds Pumps	Good	22 3196LTI	
1	TCTP-1886		MBR W3 Pump 2_ 110-63-121VFD	Electrical Devices	Variable Frequency Drives	Tri-City	MBR	Non-Potable Water	Siemens	Good	15 W120CF	-40750-10
1	TCTP-1901		MBR W3 Flow Indicating Transmitter	Electrical Devices	Instrumentation	Tri-City	MBR	Non-Potable Water	SIEMENS	Good	10	
1	TCTP-1902		MBR W3 Flow Indicating Transmitter	Electrical Devices	Instrumentation	Tri-City	MBR	Non-Potable Water	SIEMENS	Good	10	
P	TCTP-1923		MBR WAS Valve_540-35-059	Gates and Valves	Plug Valves	Tri-City	MBR	MBR Process	Dezurick	Good	30 SHC-632	<u>)</u>
1	TCTP-1925		MBR WAS Valve_540-35-061	Gates and Valves	Plug Valves	Tri-City	MBR	MBR Process	Dezurick	Good	30 SHC-632	<u>)</u>
P	TCTP-1932		MBR WAS Pump 1_110-35-051	Pumps	Centrifugal	Tri-City	MBR	Waste Activated Sludge	Weir Flow Control (Wemco)	Good	22 D4K-HS	DOW
P	TCTP-1939		MBR WAS Pump 2_110-35-052	Pumps	Centrifugal	Tri-City	MBR	Waste Activated Sludge	Weir Flow Control (Wemco)	Good	22 D4K-HS	DOW
P	TCTP-1948		MBR WAS Valve_540-35-060	Gates and Valves	Plug Valves	Tri-City	MBR	Waste Activated Sludge	Dezurick	Good	30 SHC-632	<u>)</u>
P	TCTP-1953		MBR Mix Liquor WAS Gate 510-35-021	Gates and Valves	Gates	Tri-City	MBR	Waste Activated Sludge	Golden Harvest Inc.	Good	15 GH-66	
P	TCTP-1954		MBR Mix Liquor WAS Gate 510-35-022	Gates and Valves	Gates	Tri-City	MBR	MBR Process	Golden Harvest Inc.	Good	15 GH-66	
1	TCTP-204		MBR Aeration Basin 5	Tanks	Tanks, Basins, Wet Wells	Tri-City	MBR	Aeration		Good	75	
1	TCTP-205		MBR AB 5 DeWater Pump_110-38-015	Pumps	Centrifugal	Tri-City	MBR	Aeration	KBS Aktiengesellschaff	Good	22 K200-40	0/G3/ NH
P	TCTP-226		MBR AB5 Gallery Booster Fan 610-90-002	HVAC Equipment	Exhaust Fans	Tri-City	MBR	HVAC Group	Greenheck Corp.	Very Good	15 TCB-2-1	8-10
P	TCTP-227		MBR AB Gallery EF_VFD610-90-002	HVAC Equipment	Variable Frequency Drives	Tri-City	MBR	HVAC Group	Dan Foss	Very Good	15 VLT	
1	TCTP-264		MBR Basin 1A Turbidity Meter	Electrical Devices	Instrumentation	Tri-City	MBR	MBR Process	Hach Instruments	Good	10 AIT-39-0	128
P	TCTP-265		MBR Basin 1B Turbidity Meter	Electrical Devices	Instrumentation	Tri-City	MBR	MBR Process	Hach Instruments	Very Good	10 AIT-39-0	/48
P	TCTP-266		MBR Basin 2A Turbidity Meter	Electrical Devices	Instrumentation	Tri-City	MBR	MBR Process	Hach Instruments	Good	10 AIT-39-0	/68
P	TCTP-267		MBR Basin 2B Turbidity Meter	Electrical Devices	Instrumentation	Tri-City	MBR	MBR Process	Hach Instruments	Good	10 AIT-39-0	88

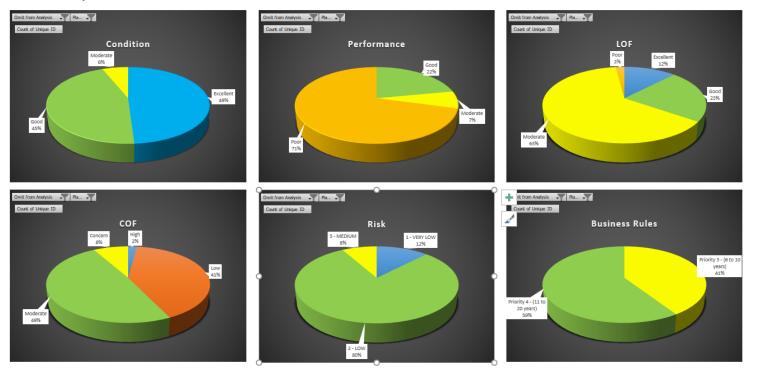
S ASSET MANAGEMENT	ne +			🌼 🧮 🎨 🔇 🔗 魚 🕜 Matt House
 Wastewater Treatment Storm & Sanitary Collection System Customer Service Fleet 	 Storm PMs Storm Structures Stormwater Control Point Stormwater Control Vegetated Stormwater Inlet Sewer PMs 		Storm Pipe CCTV Assessments (PACP) Storm Manhole CCTV Assessments (MACP) Archived Storm Conduit TVI Storm Structure Inspections Pond Inspections Sewer Pipe CCTV Assessments (PACP) Sewer Manhole CCTV Assessments (MACP) Sewer Lateral CCTV Assessments (LACP) Archived Sewer TVI	\$
Compliance Tracking Employee Classes &	Sanitary Inventory	G	Stormwater Inventory	c
Certifications Performance Clackamas Metrics	Cleanouts + Control Valves + Laterals + Fittings		Access Manholes Cleanouts Control Pavement Roof Vaults Control Pipes	
Inventory Clean-up Supervisor Quick Views	Hanholes Monitoring Devices Network Facilities (22) Network Facilities Equipment		Control Points Control Vegetated Culverts Discharge Points	
System Administrators Training and SOPs	Pipes Network Structures System Valves		Ditches + Fittings + Inlets	
IT Administrative	 + Vaults + Pump Station Pump Readings 		Laterals Monitoring Devices Pipes System Valves	
GIS			L	


Asset Condition Assessments

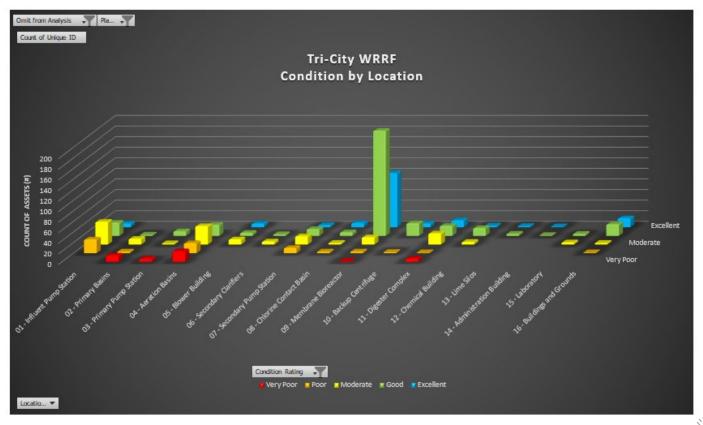
- Pipes 18-inches and larger
- Pipes smaller than 18-inches
- Pump station equipment
- Water resource recovery facility equipment
- Stormwater infrastructure
- Fleet


	Sewage Pum	imp No.3 Syst			em	Colle	ction System	
Asset Type	PUMP CENT		Loca			cation 70-Gladstone		
Asset ID	PST-110-070	-1300		Inspe	Inspection Date		/2016	
Comments				Flag				
Quest	tion	Overriding?		Answer	NA	Flag	Answer Comment	
Absence of Leaks			5	no			Mechanical seal failed	
Absence of Pump Cavit	tations		1	yes				
Acceptable Noise			1	yes				
Accessibility			2	Semi Restricted Access				
All Safety Guards Press	ent		1	yes				
Corrosion			2	Minor				
Mounting			1	Excellent				
Operation at Inspection	n		1	yes				
Packing Gland			5	Failure Imminent			Mechanical seal failed	
Vibration Analysis		Yes	2	2 -Good .03915 inches/sec	×	Needs Review	shaft connection 0.111 in/sec; pmp top 0.072 in/sec; pmp btm 0.050 in/sec	
Condition Category Condition Score Risk Score	10 to 20% nee 2.80 0	ds maintenance		Consequence Sco	ore 0 0			
Photo(s)								

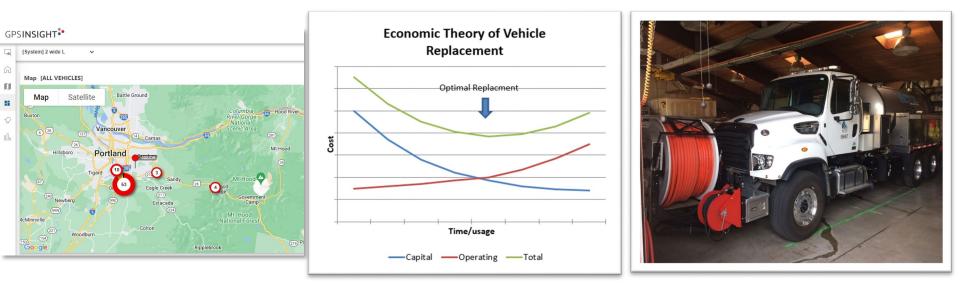
Asset Condition Assessments


11

WATER ENVIRONMENT SERVICES


Data-Driven Dashboards

Intertie 2 Pump Station



Data-Driven Dashboards

WATER ENVIRONMENT SERVICES

Fleet Management

During the past 9 years, we have decreased the average age of our fleet from 12.2 to 9.8 years old and the median age from 11 to 7 years old. **Why** is this significant? Operational reliability, reduced maintenance costs, improved safety features and better fuel economy.

Continuous Improvements

IMPROVEMENT

Clean and repair conveyance pipes PACP driven pipe rehabilitation PACP driven pipe rehabilitation

PACP driven pipe rehabilitation

Prepare capital and O&M budgets

Pump rebuild planning

Fleet risk metrics informed by GPS telematics

Upgrade flow monitoring equipment and rain gauges

Hydraulic model and master plan updates

Asset Inventories

Monitor

operational performance Transfer Issue work orders to inspect equipment and order necessary repairs

Training

Identify risks to the system or plant

System

integrations

Engage with customers and stakeholders about their expectations

Track SSOs or other regulatory compliance measures

asset condition

Respond to emergencies to limit

service interruptions

Condition Assessments

Thank you

Questions?

