

Water Environmental Services

Sanitary and Stormwater Rules and Standards Workshop #3A – Sizing Tools

November 5| 2018

Today's Plan

- Performance Standards Review
- Flow Duration Matching Tools
- Facility Sizing Tools Demos
- Wrap-Up Discussion

BMP Sizing Tool MGS Flood WWHM TRUST EPA National Stormwater Calculator Portland PAC Tool

Performance Standards

Review Proposal

Performance Standards Challenges and Issues

Streamline design and review process

Flexibility in site design and facility selection

Performance Standards WES Proposal

Site Planning

- Allocate a percentage of the site to LID facilities or other green approaches (5-6% of impervious surface)
- or
- Demonstrate that WQ and flow control standards are met through LID facilities

Water Quality

- Capture and treat 80% of average annual runoff volume
- Size facilities for 1" 24-hour storm

Flow Control

 Match flow durations to immediate predevelopment conditions

- Infiltration can be used to meet performance standard
- Flow control exemptions for direct discharge to major water bodies

Fee in lieu option TBD...

Water Quality

- Capture and treat 80% of average annual runoff volume
 - 1.0 inch, 24-hour storm is appropriate for Clackamas County

- Water quality facility calculation methods:
 - Volume calculations
 - Event-based modeling (SBUH, SCS, etc.)
 - Continuous simulation modeling
 - Prescriptive sizing tools

Flow Control

- Match flow durations to pre-development conditions
 - Pre-development is defined as the conditions of the site immediately prior to development
 - Infiltration can be used to meet performance standard
 - Flow control exemptions for discharge to major water bodies
 - Requires more complex calculation tools
- Questions:
 - What is the appropriate range of flows?
 - Can the flow-duration matching performance standard be approximated by a peak flow model?

Flow Duration Matching

Computational Tools

Computational Tools

 Four types of computational tools to size stormwater facilities to match flow durations:

Star Bed

All and safe and

- HSPF Modeling Tools 1.
- 2. Runoff Time Series
- 3. BMP Sizing Factors
- 4. Prescriptive Sizing

1. HSPF Modeling Tools

- Methodology
 - Tool built on HSPF modeling platform

- Tool directly runs calibrated HSPF model to generate and route long term runoff time series through stormwater facilities.
- Features
 - Requires watershed specific rainfall, evaporation, and HSPF parameters
 - Allows full flexibility in facility design features
 - Allows facility design iteration and optimization
- Examples
 - Western Washington Continuous Simulation Hydrology Model (WWHM)
 - Tualatin River Urban Stormwater Tool (TRUST)
 - Bay Area Hydrology Model (BAHM)

2. Runoff Time Series

Methodology

- Use HSPF model simulations to establish "unit runoff time series" for each soil and land use condition
- Tool scales runoff time series based on actual area and land cover types
- Tool uses level pool routing to analyze facility design
- Features
 - Flow duration sizing with less time/effort for the user
 - Allows full flexibility in facility design features
 - Allows facility design iteration and optimization
- Examples:
 - WES BMP Sizing Tool (pond sizing component)
 - King County Runoff Time Series (KCRTS)

3. BMP Sizing Factors

Methodology

- Use HSPF to generate long term runoff time series for a unit land use area for each combination of soil/land use/developed condition.
- Use HSPF to size facilities by routing runoff time series through pre-defined facility types
- Develop sizing factors for each facility type and land use change condition
- Tool applies sizing factors to site-specific land use definitions
- Features
 - Flow duration sizing with less time/effort for the user
 - Facilities with set specifications are pre-sized using runoff time series.
 - Facility design parameters are fixed to match computational assumptions.
- Examples:
 - WES BMP Sizing Tool (planter, rain garden, and swale components)
 - Contra Costa, San Diego
 - Kitsap County spreadsheet tool

4. Prescriptive Sizing

- Methodology
 - Same background work as Prescriptive Sizing Factors to establish set facility sizes for range of land use conditions
- Features
 - Flow duration sizing with less time/effort for the user
 - Regulating agency defines facility size, based on previous calculations.
 - Burden of technical analysis is transferred to regulating agency.
 - Requires prescriptive facility designs.
- Examples:
 - Lake Oswego (in development for small sites)

Selecting the Appropriate Tool

	HSPF Modeling Tools	Runoff Time Series	BMP Sizing Factors	Prescriptive Sizing
Flexibility in facility specs	Х	Х		
Design specifications provided			Х	Х
Evaluates facilities in series	Х	Х		
Results are easily reproduced		Х	Х	Х
Specific to regional conditions	Х	Х	Х	Х
Requires technical sophistication	Х	Х		

Questions to Consider

- Does the tool use the right calculation methods?
- What level of customization is required?
- How will WES (and others) review the results and compare to design plans?

Facility Sizing Tools

Demos

Example Project Background

- Rural \rightarrow Residential
- 6.59 Acres
- Proposed 35 lot subdivision
- Type C soils

Example Project Sizing Tool Input Data

Sizing Tool Demos

Wrap Up Discussion

